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Abstract: This study demonstrates how model-based clustering can be undertaken using mclust, a 
contributed R package, to examine factors influencing mathematics performance of high school students in 
Qatar. Although there are numerous cluster analysis approaches, this paper highlights the intricacies, 
assumptions, limitations, benefits and pitfalls of clustering using a model-based approach, and how the inherent 
inadequacies of other clustering approaches can be better explored using model-based methods. Moreover, this 
paper demonstrates how the mclust package can be used to concurrently analyse and compare different 
models, in order to select the preferred clustering model according to the Bayesian information criterion, and 
to estimate parameters of the associated model using maximum likelihood estimation. The benefit of selecting 
a prior to avoid model-based clustering estimation singularity- and degeneracy-related issues offers an 
alternative approach to improve the rate of convergence. The results from applying model-based clustering 
using mclust to educational data that examines the mathematics performance of secondary students in Qatar 
will be used to identify factors that influence mathematics performance for different clusters of students, to 
help facilitate potential adoptions of the most appropriate remedial teaching strategies to implement to enhance 
learning. Furthermore, the results can help teachers to identify groups of students whose performance in 
different subject areas is likely to be affected by certain factors, thereby helping them to reduce potentially 
undesirable learning outcomes. 
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1. INTRODUCTION 

Various clustering approaches exist, including density-based, distribution- or model-based clustering (Fraley 
& Raftery, 2002), centroid (Niraj et al., 2013), k-means (Hartigan & Wong, 1979; Lloyd, 1982) and hierarchical 
clustering (Gordon, 1987). The focus of this paper is to describe the model-based clustering methodology using 
the mclust (Fraley et al., 2020; R Core Team, 2020). The mclust employs finite normal mixture modelling 
to determine model-based clustering. By treating the entire population as a mixture of sub-populations, with 
the latter identified as clusters, individual elements of this mixture are modelled by conditional probability 
distributions. This method therefore models individual elements of this mixture by means of conditional 
probability distributions. The mclust implements several different models using maximum likelihood 
estimation and the Bayesian criterion for selecting the model that is most likely to determine the appropriate 
number of clusters. As described by Grün (2018) and Fraley et al. (2012), the versatility of the model-based 
clustering methodology is evident by its diverse applications. By applying the model-based clustering 
approach, geometric characteristics of the clusters including the orientation, shape and volume of the clusters 
become of interest. These aspects are determined based on the covariance matrices which are typically 
approximated based on the underlying data, with the distribution of each group in the mixture model either 
ellipsoidal, diagonal or spherical. 

2. METHODS 

2.1. Data source 

The variables assessed for the present study were based on Programme for International Student Assessment 
data collected from secondary school students in Qatar (OCED, 2013). A total of 10,966 students from 154 
schools participated in the study. Each student was asked a series of questions related to learning mathematics 
in the classroom and based on their responses, their a measure of their mathematics teachers’ use of 12 different 
teaching strategies was formed. Each teaching strategy was scored from 1 to 4 based on the extent to which the 
teacher utilised the technique, using a scale from ‘never’ to ‘always’. A measure of parental education levels 
was also provided as a proxy measure of socio-economic status, with measures scored from 0 to 6, ranging 
from ‘less than primary school’ to ‘postgraduate level’ (Alzahrani and Stojanovski, 2019). A students’ 
performance in mathematics was determined from a questionnaire comprising 35 mathematics questions. 
Students’ mathematics performance along with the student demographic variables and teaching strategies were 
analysed to establish how these varied using model-based clustering approaches.  

2.2. Parameterisation of covariance matrices in mclust 

The most general covariance matrix for a mixture of G clusters is defined by Ʃk, where k represents the kth 
group among G clusters in the mixture model, so that each cluster has its own covariance matrix. Here, Ʃk is a 
P × P symmetric covariance matrix that contains variances for the P variables along the main diagonal, and 
covariances between pairs of variables along the off-diagonal for the kth cluster. Following the method of 
Banfield and Raftery (1993) and Celeux and Govaert (1995), the within-cluster covariance matrix can be 
decomposed by Ʃk = λkDkAkDk

T. The orthogonal matrix of eigenvectors is denoted by Dk, a P × P matrix. 
Corresponding to each eigenvector, the diagonal matrix of scaled eigen-values of Ʃk is denoted as Ak, is a P × P 
diagonal matrix. This is scaled to have a determinant equal to 1, with a scalar value λk factored from the eigen-
value matrix to ensure the determinant is equal to 1.  

The covariance matrix has several possible parameterisations that can be considered. mclust employs unique 
individual identifiers for each possible covariance matrix parameterisation; I for coordinate axes, V for variable 
and E for equal, with 14 different combinations by including different constraints on volume, shape and 
orientation of clusters. Table 1 summarises the available options for each model obtained from the 
decomposition of Ʃk. 

Table 1. Within-Cluster Covariance Matrix Parameterisations for Multidimensional data available in mclust, 
alongside corresponding Geometrics features 

Model 𝚺𝚺𝒌𝒌 Distribution* Volume** Shape*** Orientation**** 

EII 𝜆𝜆𝜆𝜆 Spherical Equal Equal Not available 

VII 𝜆𝜆𝑘𝑘𝐼𝐼 Spherical Variable Equal Not available 

EEI 𝜆𝜆𝜆𝜆 Diagonal Equal Equal Coordinate axes 

VEI 𝜆𝜆𝑘𝑘𝐴𝐴 Diagonal Variable Equal Coordinate axes 
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EVI 𝜆𝜆𝐴𝐴𝑘𝑘  Diagonal Equal Variable Coordinate axes 

VVI 𝜆𝜆𝑘𝑘𝐴𝐴𝑘𝑘 Diagonal Variable Variable Coordinate axes 

EEE 𝜆𝜆𝜆𝜆𝜆𝜆𝐷𝐷𝑇𝑇 Diagonal Equal Equal Equal 

EVE 𝜆𝜆𝜆𝜆𝜆𝜆𝑘𝑘𝐷𝐷𝑇𝑇 Ellipsoidal Equal Variable Equal 

VEE 𝜆𝜆𝑘𝑘𝐷𝐷𝐷𝐷𝐷𝐷𝑇𝑇 Ellipsoidal Variable Equal Equal 

VVE 𝜆𝜆𝑘𝑘𝐷𝐷𝐴𝐴𝑘𝑘𝐷𝐷𝑇𝑇 Ellipsoidal Variable Variable Equal 

EEV 𝜆𝜆𝐷𝐷𝑘𝑘𝐴𝐴𝐷𝐷𝑘𝑘𝑇𝑇 Ellipsoidal Equal Equal Variable 

VEV 𝜆𝜆𝐾𝐾𝐷𝐷𝑘𝑘𝐴𝐴𝐷𝐷𝑘𝑘𝑇𝑇 Ellipsoidal Variable Equal Variable 

EVV 𝜆𝜆𝐷𝐷𝑘𝑘𝐴𝐴𝐾𝐾𝐷𝐷𝑘𝑘𝑇𝑇 Ellipsoidal Equal Variable Variable 

VVV 𝜆𝜆𝐾𝐾𝐷𝐷𝑘𝑘𝐴𝐴𝐾𝐾𝐷𝐷𝑘𝑘𝑇𝑇 Ellipsoidal Variable Variable Variable 

* Spherical, diagonal and ellipsoidal refer to the distribution restrictions in each of P variables’ directions.  
** In terms of Volume, ‘equal’ indicates that all k clusters are constrained to the same volume (𝜆𝜆𝑘𝑘) and ‘variable’ means that each k cluster 
could take on a different volume (𝜆𝜆𝑘𝑘). 
*** In terms of Shape, ‘equal’ implies that each k cluster is restricted to the same shape. 
**** In terms of Orientation (orthogonal matrix of eigenvectors), ‘equal’ means the k clusters are constrained to the same orientation (𝐷𝐷𝑘𝑘) 
and ‘variable’ means that each k cluster can have a different orientation (𝐷𝐷𝑘𝑘). ‘Coordinate axes’ means that the model is diagonal in 
distribution, so the ellipse orientation in all P dimensions should be oriented in one of P dimension’s direction. ‘Not available’ means that 
the clusters do not have a specific orientation and are like a circle in each P dimension cross-section. 
 

Interpreting the combination of different unique individual identifiers used by mclust depends on the used 
parameterisations. For example, EVI shows all clusters have equal (E) volume, varying (V) cluster shapes, and 
coordinate axes orientation (I). If the P variables are uncorrelated within clusters, the covariances are diagonal 
with parameters related to volume, shape and orientation along the coordinate axes—λk and Ak, based on the 
data. In the Gaussian mixture, if the variables used in clustering are uncorrelated and have the same variation 
in all P directions within each cluster, the clusters are spherical where the variance of all parameters is identical 
in each cluster. If the variances of the P variables are different within a cluster but uncorrelated, the mixture 
will be diagonal. In most cases, the distribution of the Gaussian mixture has different variations and features 
tend to be correlated, and so the covariance matrix of the clusters is ellipsoidal. The centroid of every cluster 
is given by its mean (𝜇𝜇𝑘𝑘), with orientation, shape and volume of each cluster a function of its covariance matrix. 

2.3 Expectation–Maximisation Algorithm 

The likelihood function for the G components Gaussian mixture is given by the product of mixture densities, 
where each density is expressed as the sum of the mixture proportions multiplied by the component densities 
for each group. The latter follows a multivariate normal distribution. Since the cluster membership of each 
observation is unknown, an iterative two-step expectation maximisation (EM) algorithm is used to obtain 
maximum likelihood estimates. The algorithm involves an expectation step to estimate the probabilities of 
cluster membership of each observation, and a maximisation step to estimate unknown model parameters, and 
iterates until convergence. For a Gaussian mixture model, the probability density function for an observation 
is given as: 

𝑓𝑓(x;  θ) = �π𝑘𝑘

𝐺𝐺

𝑘𝑘=1

𝜙𝜙(x; 𝜇𝜇𝑘𝑘, Σk) 

where G is the total number of clusters, 𝜇𝜇𝑘𝑘is the mean vector of P variables in the data with a size of P × 1 for 
the kth cluster, Σ𝑘𝑘 is a P × P covariance matrix of the kth cluster, and π𝑘𝑘 is the mixture proportion for the kth 
cluster (∑ π𝑘𝑘𝐺𝐺

𝑘𝑘=1 = 1). We denote θ to be the vector of parameters for the mixture model, such that θ =
(π1, … ,π𝐺𝐺−1, 𝜇𝜇1, … , 𝜇𝜇𝐺𝐺 , Σ1, … , ΣG). The term 𝜙𝜙(x; 𝜇𝜇𝑘𝑘, Σk) is the density of the Gaussian distribution withmean 
vector, 𝜇𝜇𝑘𝑘, and covariance matrix Σk (Erar, 2011). 
The EM algorithm is the algorithm typically employed for model-based clustering which uses starting values 
for the parameters in the model and iteratively applies two steps to estimate the parameters (Erar, 2011; 
Melnykov and Maitra, 2010). The expected probabilities for assigning data points to each cluster are 
determined by use of initial values for the parameters. The second step is the maximisation step where the 
assigned probabilities are used as weights to estimate optimal model parameters for each cluster. The Bayes 
formula is used in the expectation step, and also in each consequent step, to update the cluster probabilities for 
each observation. In the maximisation step, the mean and covariance matrix of Gaussian distribution are 
weighted with the cluster probability for each observation, with repetition of these two steps until convergence 
of the algorithm, at which point the parameter maximum likelihood estimates are determined. Selecting an 
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appropriate set of initial values to start the EM algorithm is an important decision, as convergence of the 
algorithm may depend on this. 

2.4 Maximum a posteriori simulation 

If a prior distribution is used, 𝜇𝜇 and 𝛴𝛴𝑘𝑘 can be derived from the conjugate prior of the normal distribution. In 
this case, the parameters estimated by the EM algorithm are the ‘maximum a posteriori’ (MAP) estimates, as 
they are derived by multiplying the prior probability with the likelihood of the parameters, and hence is not 
maximum likelihood estimation. From the formula proposed by Fraley et al. (2012), 𝜇𝜇 is simulated by a normal 
distribution with mean 𝜇𝜇𝑝𝑝 (the mean of the data for each parameter) and variance Σ/𝜅𝜅𝑝𝑝, where 𝜅𝜅𝑝𝑝 is the 
shrinkage parameter equal to 0.01, Σ is simulated by the inverse Wishart distribution with 𝜈𝜈𝑝𝑝 degrees of 

freedom and Λ𝑝𝑝 is the scale of the prior distribution: 𝜇𝜇|Σ ~ 𝑁𝑁 �𝜇𝜇𝑝𝑝, Σ
𝜅𝜅𝑝𝑝
� , such that   Σ ~ IW(𝜈𝜈𝑝𝑝,Λ𝑝𝑝), where 𝜈𝜈𝑝𝑝 =

𝑃𝑃 + 2, P is the dimension of the data, Λ𝑝𝑝 = 𝑣𝑣𝑣𝑣𝑣𝑣(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)
𝐺𝐺2/𝑃𝑃  is the scale of the prior distribution and G is the number 

of clusters. 

2.5 Bayesian Regularisation 

Bayesian regularisation (or prior control) is used to eliminate singularities that arise when using the EM 
algorithm to estimate model-based clustering (Fraley & Raftery, 2007). The approach is based on a dispersed 
conjugate prior and determines a MAP estimator. Prior control aids model selection by using an adaptation of 
a modified BIC (Lomet et al., 2012) as the parameters are estimated by maximising the posterior instead of the 
likelihood function. Given that the estimated parameters could differ in MAP, the value of the likelihood used 
in BIC could also differ from the likelihood derived by maximum likelihood estimation (Xue et al., 2017). 
Therefore, prior control helps to reduce singularities that are common with maximum likelihood approaches, 
without affecting stability of the results. 

In model-based clustering parameterisations through eigen-decomposition of within-cluster covariances, the 
value with precise eigenvector normalisation constraint permits cross-component restrictions on the 
orientation, volume and shape of component mixtures that are normal. This is a type of Bayesian regularisation 
(Fraley & Raftery, 2002). Models could be constrained to comprise of varying or fixed variances across the 
components. Models with less variation have less chance of singularity issues as some elements in restricted 
models of decomposed matrices can’t differ across clusters (Fraley & Raftery, 2007). Such components are 
derived using all observations, reducing the chance of failing due to zero determinants relative to models with 
no constraints (i.e. when volume, shape and orientation can differ) in any cluster (Fraley & Raftery, 2007). 

Parameters of the scalar, diagonal and full matrix (i.e. volume, shape and orientation) need to be estimated. 
Inclusion of a low variance in each mixture component defining the clusters may lead to singularity issues and 
hence are more likely to have less model flexibility. Spherical and diagonal models have diagonal matrices and 
so can have singularity issues if there is a parameter in the dataset with zero variance in a cluster.  
Model-based clustering was investigated using the mclust package to fit the data for the present study, since 
the data comprised a mixture of multivariate normal distributions. Given that the inverse of the covariance 
matrix is used in the theory of the multivariate normal distribution, the covariance matrix is decomposed into 
orientation, volume and shape, each of which could be chosen as variable (V) or constrained as equal (E) for 
all clusters. The choice of whether to constrain or treat as variable is determined by comparing the BIC in each 
fitted model. A greater likelihood is more common among complex models (with numerous predictors and a 
restricted covariance matrix). Free parameters are estimated by maximising the product of the prior and 
likelihood function in the two steps of the EM algorithm.  

Table 2. Number of Free Parameters used to calculate the BIC 

Model Free mixture 
proportions 

Free mean 
parameters 

Free covariance parameters Total number of free parameters 𝒎𝒎 

EII G – 1 GP 1 G +  GP 

VII G – 1 GP G 2 G + GP − 1 

EEI G − 1 GP P G – 1 + GP + P 

VEI G − 1 GP P + G − 1 GP + P+2 G − 2 

EVI G − 1 GP GP – G + 1 2GP 
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VVI G − 1 GP GP 2GP + G − 1 

EEE G − 1 GP P(P + 1)/2 GP + G – 1 + P(P + 1)/2 

EEV G − 1 GP GP(P + 1)/2 −(G − 1)P GP(P + 3)/2 − (G − 1)(P − 1) 

VEV G − 1 GP GP(P + 1)/2 −(G − 1)(P − 1) GP(P + 3)/2 − (G − 1)(P − 2) 

VVV G − 1 GP GP(P + 1)/2 GP(P + 3)/2 + G − 1 

 

For the purposes of model comparison, BIC employs a penalty term on the number of parameters in the model, 
to reduce the maximum likelihood by including additional parameters (Bogdan et al., 2004), in order to 
determine the optimal mixture model. The BIC implies an asymptotic outcome, based on the fact that the 
distribution of the data are assumed to belong to the exponential family. The BIC is described as:                                        

𝐵𝐵𝐵𝐵𝐵𝐵 = 2 log(𝐿𝐿) −𝑚𝑚 log (𝑛𝑛) 

where L denotes the value of the maximum likelihood function of the estimated model, m the number of free 
estimated parameters, and n the sample size. This formula includes a term that penalises for the inclusion of 
additional parameters, implying that redundant parameters could reduce the BIC value. The larger the BIC, the 
more likely the model and number of clusters adequately describes the data. 

3. RESULTS 

3.1. Finding the optimal number of clusters 

Table 3 summarises the best fitting models based on the BIC criteria, which mclust recognised as the best 
combination of clusters to collectively capture the features of the assessed 15 variables that relate to 
mathematics performance of Qatar students. The best selected model was the VVV model, with seven 
component clusters, based on the smallest BIC value of −95,669 across all compared models. The VVV model 
indicates that the geometric features of the ellipsoidal distribution for k clusters could have a different volume 
(𝜆𝜆𝐾𝐾), shape, and orientation (𝐷𝐷𝑘𝑘). The second best model is the VVV model with five component clusters since 
the associated BIC is the second smallest value (BIC= −95,852). The difference between the VVV model with 
seven components and the model with five components was not practically significant as the BIC was only 
slightly different. However, the VVV model with seven clusters is recommended by mclust as providing the 
optimal clustering of the data.  

Table 3. BIC updated for all Models 
# EII VII EEI VEI EVI VVI EEE EEV VEV VVV 

2 −123,51 −123,4 −122,331 −122,162 −121,528 −118,115 −114,543 −112,339 −111,980 −101,827 

3 −121,78 −121,057 −119,314 −119,100 −114,349 −112,932 −113,976 −111,625 −110,958 −97,840 

4 −120,24 −119,485 −118,180 −117,682 −111,416 −108,245 −112,897 −110,509 −109,752 −96,407 

5 −118,82 −118,052 −117,366 −116,566 −108,783 −104,882 −112,596 −109,563 −108,663 −95,852 

6 −118,18 −117,190 −116,559 −115,694 −106,984 −102,952 −111,783 −108,799 −108,054 −96,224 

7 −117,67 −116,586 −115,910 −114,931 −104,863 −101,829 −111,768 −108,315 −107,593 −95,669 

8 −117,17 −116,134 −115,264 −114,229 −104,211 −101,167 −111,746 −108,363 −107,400 −96,269 

9 −116,66 −115,704 −114,825 −113,817 −103,353 −100,386 −111,682 −108,166 −107,425 −97,117 
 

−116,27 −115,276 −114,397 −113,558 −102,896 −99,684 −111,142 −108,244 −107,333 −97,436 

3.2. Cluster-Based analysis of Individual Parameters 

Table 4 presents mathematics performance as an evaluation field in which the variables were used to estimate 
the mean for each of the seven clusters. The colours red, yellow and green are chosen to represent the 
effectiveness of teaching strategies as low, moderate and high, respectively. For example, in cluster 7 (C VII), 
‘attributions to failure’ and ‘disciplinary climate’ had variable averages of 1.902 and 1.492 respectively, out of 
4. This meant that, although cluster 7 included most of the variables with high implementation of most teaching 
strategies and, on average, with students with moderately educated parents, there was also a low ‘disciplinary 
climate’, low ‘attribution to failure’, as well as low ‘vignette teacher support’, and notably and socio economic 
status, which was measured by family wealth, all of which influenced student mathematics performance. 
Students in this cluster recorded the lowest mathematics performance, compared with students in other clusters. 
With the maximum value of 4 out of 4, cluster 5 (C V) recorded the highest values for ‘mathematics teaching’ 
and ‘teacher support’. However, the evaluation field (mathematics performance) for this cluster was not as high 
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as may be expected, as this cluster also comprised of students with parents with low parental education levels. 
This could mean that notable teaching strategies for students who, on average, come from backgrounds of 
lower socio-economic status, does not necessarily lead to notable improvements in mathematics performance 
as these can be outweighed by socio-economic backgrounds of students. This could be due to these students 
having, on average, parents with lower education levels, parents who could potentially be less aware of the 
value of mathematics to future career paths and may also be less able to assist their students in these subject 
areas. There could hence be a lower emphasis on learning and hence on performing well in mathematics among 
such students based on their home environments. 

Table 4. Estimated Means in each cluster and each evaluation field  

Variables 

C I (599) C II (100) C III (359) C IV (679) C V (210) C VI (1,034) C VII (61) 

20.2% 3.2% 11.4% 22.4% 6.8% 33.9% 2.0% 

Attributions to failure 2.601 3.153 2.578 2.438 2.796 2.522 1.902 

Mathematics teaching 3.215 3.052 3.229 3.124 4.000 3.186 3.882 

Teacher-directed instructions 3.076 2.667 3.058 2.993 3.912 3.045 3.692 

Student orientation 2.610 2.654 2.408 2.494 3.576 2.449 3.500 

Formative assessment 2.840 2.714 2.797 2.690 3.818 2.774 3.451 

Cognitive activation 2.929 2.365 2.920 2.900 3.648 2.943 3.697 

Disciplinary climate 2.578 3.080 2.712 2.663 2.998 2.664 1.492 

Vignette teacher support 2.697 2.743 2.826 2.757 3.039 2.848 2.447 

Teacher support 3.214 2.433 3.226 3.186 4.000 3.233 3.729 

Vignette classroom management 2.973 2.614 3.020 3.033 3.084 3.032 3.144 

Classroom management 3.028 2.301 2.958 2.970 3.330 2.969 3.348 

Student–teacher relations 2.959 2.788 2.985 2.962 3.474 2.993 3.468 

Socio-economic status 1.050 1.214 1.157 1.400 1.305 1.194 1.034 

Mother qualification 3.173 4.279 4.139 3.463 3.404 6.000 4.721 

Father qualification 3.326 4.314 6.000 3.696 3.927 6.000 5.033 

Mathematics Performance  0.210 0.156 0.288 0.206 0.187 0.311 0.148 
 

4. DISCUSSION  

The uptake of most mathematics teaching strategies was low to moderate in most clusters. Cluster 6 was 
associated with the highest mathematics performance scores but lower utilisation of mathematics teaching 
strategies. This could mean that students with parents with higher education levels could perform notably better 
in mathematics, irrespective of how mathematics content is presented in class. 

This study required a conceptual framework to capture a diverse range of variables that could potentially relate 
performance in mathematics to multiple variables to describe the interactions between various aspects of the 
learning environment in terms of learning mathematics. To achieve this, Bayesian regularisation was used in 
an attempt to reduce convergence issues which are typical with other clustering methods. This paper has 
demonstrated how model-based clustering using mclust  can be used to concurrently analyse different 
models, to identify the most suitable model by selecting the best fitting clustering model using the BIC criterion 
and estimating parameters via maximum likelihood estimation. 

From a statistical point of view, this paper has explained the importance of the volume, shape and orientation 
of clusters in the model-based clustering approach, and the way these interact to influence the distribution 
(ellipsoidal, diagonal or spherical) of each cluster. The EM algorithm was used to estimate the values of cluster 
memberships and a prior was used to control model-based clustering estimation to enhance results. These 
models were investigated in an educational context to identify factors that influence mathematics performance 
in different clusters of students by adaptation of the best fitted model. Furthermore, these results can help 
teachers to better identify groups of students whose performance in various subject areas is more likely to be 
affected by certain factors—thereby helping them to consider avenues to explore to improve student learning.  
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Future research that stems from this work can include investigation of the dimension reduction function in the 
mclust package to visualise results of clustering results in dimensions lower than that of the original dataset.  
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